Exploiting multilingual wikipedia to improve arabic named entity resources

نویسندگان

  • Mariam Biltawi
  • Arafat Awajan
  • Sara Tedmori
  • Akram Al-Kouz
چکیده

This paper focuses on the creation of Arabic named entity gazetteers, by exploiting Wikipedia and using the Naïve Bayes classifier to classify the named entities into the three main categories: person, location, and organization. The process of building the gazetteer starts with automatically creating the datasets. The dataset for the training is constructed using only Arabic text, whereas, the testing dataset is derived from an English text using the Stanford name entity recognizer. A Wikipedia title existence check of these English name entities is then performed. Next, if the named entity exists as a Wikipedia page title, a check for Arabic parallel pages is conducted. Finally, the Naïve Bayes classifier is applied to verify or assign new name entity tag to the Arabic name entity. Due to the lack of available resources, the proposed system is evaluated manually by calculating accuracy, recall, and precision. Results show an accuracy of 53%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Gazetteer Generation from Wikipedia

The presence of high quality Named Entity gazetteer within a CLIR system is crucial in order to provide multilingual access to digital resources, particularly in the domain of Digital Libraries. In our paper we investigate an approach for automatically extracting this kind of resources from Wikipedia using an unsupervised approach that leverages the DBpedia classification of the English article...

متن کامل

Building a Multilingual Lexical Resource for Named Entity Disambiguation, Translation and Transliteration

In this paper, we present HeiNER, the multilingual Heidelberg Named Entity Resource. HeiNER contains 1,547,586 disambiguated English Named Entities together with translations and transliterations to 15 languages. Our work builds on the approach described in (Bunescu and Pasca, 2006), yet extends it to a multilingual dimension. Translating Named Entities into the various target languages is carr...

متن کامل

Named Entity Disambiguation for German News Articles

Named entity disambiguation has become an important research area providing the basis for improving search engine precision and for enabling semantic search. Current approaches for the named entity disambiguation are usually based on exploiting structured semantic and lingual resources (e.g. WordNet, DBpedia). Unfortunately, each of these resources cover independently from each other insufficie...

متن کامل

Low-cost Named Entity Classification for Catalan: Exploiting Multilingual Resources and Unlabeled Data

This work studies Named Entity Classification (NEC) for Catalan without making use of large annotated resources of this language. Two views are explored and compared, namely exploiting solely the Catalan resources, and a direct training of bilingual classification models (Spanish and Catalan), given that a large collection of annotated examples is available for Spanish. The empirical results ob...

متن کامل

Mining Wiki Resources for Multilingual Named Entity Recognition

In this paper, we describe a system by which the multilingual characteristics of Wikipedia can be utilized to annotate a large corpus of text with Named Entity Recognition (NER) tags requiring minimal human intervention and no linguistic expertise. This process, though of value in languages for which resources exist, is particularly useful for less commonly taught languages. We show how the Wik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017